

Nuclear Physics Institute Czech Academy of Sciences

Introduction

Recent development in neutron simulation packages:

- Large and growing library of user contributed components in McStas
- Radiation transport (MCNP, Geant4): progress in simulation of neutron optics (guides)
- Vitess, SIMRES: other ray-tracing packages developed in parallel to McStas have features not available in McStas x miss many features that McStas has
- Monte Carlo Particle Lists (MCPL) a great tool for putting everything together (more details in the following talks)

Few facts about SIMRES:

- Developed from specialized tool (ResTrax for TAS) into general neutron ray-tracing program
- Desktop application with a friendly GUI (component editors, 3D view, scripting, commands for scanning and event analysis)
- Few but highly configurable and detailed components, quite general (most of current instruments can be simulated, monochromatic & ToF)
- Adaptive variance reduction + reverse tracing = much faster in many situations
- Difficult to add new components, limited options for sample models (good for powder diffraction)

Aim

Employ MCPL to combine McStas and SIMRES in a single simulation & exploit the synergy effects:

- Much higher simulation speed provided by SIMRES in many configurations involving samples & other bottle necks
- ✓ Employ the large McStas library of samples (and other components)
- ✓ Benefit from high configurability allowed by the McStas meta-language framework.

Newly implemented in SIMRES:

- MCPL import & export to/from SIMRES monitors NOTE: includes guide surfaces, scattering events in a sample, back-trace monitors, ...
- Possibility to launch McStas simulation from SIMRES, exchange instrument parameters & neutron lists
- ✓ Control of a combined simulation SIMRES -> McStas (-> SIMRES)

How does it work

✓ Independent on McStas environment

Only instrument executable is needed ...

✓ A very general meaning of "Sample"

= anything between the primary and secondary sections of the SIMRES instrument

Simple McStas code: SIMRES -> McStas -> SIMRES

```
DEFINE INSTRUMENT SIMRES MCPL SCRYST(string input="simres.mcpl",
int repetition=1, string export="mcstas.mcpl")
                                                         obligatory parameters
TRACE
                                                         required setting
COMPONENT Origin = Progress bar()
                                    imported from SIMRES monitor
AT (0, 0, 0) ABSOLUTE
/* MCPL import */
COMPONENT src = MCPL input (filename=input, repeat count=repetition,
polarisationuse=0, doubleprec=1, ...)
AT( 0,0,0) RELATIVE PREVIOUS
/* Sample axis, position is relative to the SIMRES monitor */
COMPONENT Sample axis = Arm()
AT (0, 0, 0.04) RELATIVE src
/* SAMPLE. Other components can be placed before or after the sample. */
COMPONENT sample = Single crystal(xwidth=0.003, yheight=0.003, zdepth=0.003,
mosaic = 30, reflections="SiO2 guartza.lau")
AT(0, 0, 0) RELATIVE Sample axis
/* MCPL export. This is where SIMRES will continue */
COMPONENT vout = MCPL output(filename=export, doubleprec=1, ...)
AT(0, 0, 0) RELATIVE Sample axis
END
                                   ... neutron goes back to the SIMRES monitor
```

Simple McStas code: SIMRES -> McStas

```
DEFINE INSTRUMENT SIMRES MCPL SCRYST(string input="simres.mcpl",
int repetition=1, string export="mcstas.mcpl")
                                                         obligatory parameters
TRACE
                                                         required setting
COMPONENT Origin = Progress bar()
                                    imported from SIMRES monitor
AT (0, 0, 0) ABSOLUTE
/* MCPL import */
COMPONENT src = MCPL input (filename=input, repeat count=repetition,
polarisationuse=0, doubleprec=1, ...)
AT( 0,0,0) RELATIVE PREVIOUS
/* Sample axis, position is relative to the SIMRES monitor */
COMPONENT Sample axis = Arm()
AT (0, 0, 0.04) RELATIVE src
/* SAMPLE. Other components can be placed before or after the sample. */
COMPONENT sample = Single crystal(xwidth=0.003, yheight=0.003, zdepth=0.003,
mosaic = 30, reflections="SiO2 quartza.lau")
AT(0, 0, 0) RELATIVE Sample axis
/* DETECTOR. */
COMPONENT xymon = PSDcyl monitor(nr=360, ny=100, filename="cylmon.dat", ...)
AT (0, 0, 0) RELATIVE Sample axis
                                             Tracing stops here
END
```

Use cases

Engineering diffractometer BEER@ESS

- 1. Standard medium resolution strain mapping An experiment with a small gauge volume of 1x1x3 mm3 in duplex steel.
- 2. High resolution strain mapping employing the beam modulation method.
- 3. Single crystal diffraction Measurement of a small single crystal (α -SiO2) using a white beam on BEER.
- 4. Simultaneous diffraction and SANS measurement A rod sample in axial strain geometry (typical for thermo-mechanical loading experiments).

Event based analysis of lattice strain distributions Deconvolution method employing particle lists

- Treatment of pseudo-strains and strain gradient smearing in a steel tube
- Test on synthetic data for STRESS-SPEC@FRMII and BEER@ESS

Medium resolution strain mapping

The engineering diffractometer BEER (ESS)

- Source: bi-spectral, W2 beamport of ESS
- **Resolution choppers**: a pair of choppers,280 Hz in optically blind mode.
- Wavelength bandwidth: from 1 Å to 3 Å.
- **Primary collimation**: vertically focusing neutron guide, primary slit 1x3 mm²
- Sample: rod (diameter=10 mm, length = 50 mm), duplex steel, axial strain geometry
- Secondary collimation: Radial collimator with gauge FWHM = 1 mm (ENGIN-X setup).
- Detector: cylindrical, resolution 2x5 mm

Using McStas components: PowderN ExactRadialCollimaor NPI_tof_dhkl_detector.comp

SINE2020, ISTSI 2019, St. Petersburg, Russia, June 29th 2019

BEER in modulation mode

Modulated primary beam by SIMRES

Scattering pattern by PowderN and NPI tof theta monitor.comp in McStas

Modulated data – event processing by McStas NPI_tof_dhkl_detector.comp

- black: standard processing
- *red*: reconstructed diffractogram

SINE2020, ISTSI 2019, St. Petersburg, Russia, June 29th 2019

Single crystal diffraction

Using Single_crystal.comp of McStas

- **Choppers**: switched off (white beam).
- Wavelength bandwidth: from 0.5 Å to 2.7 Å.
- Primary collimation: divergence slit 15x15 mm (6 m before the sample) primary slit 4x4 mm² at 50 mm the sample.
- Sample: α-SiO2 cube 3x3x3mm³, mosaicity 30' (data file siO2_quartza.lau)
- Detectors: cylindrical (PSDcyl_monitor) and 4PI (PSD_monitor_4PI) monitors, and 1x1m²
 ³He detector at 90° (PSD_Detector).

Single crystal diffraction pattern (α -SiO2) recorded by the SIMRES detector.

- Primary beam simulated by SIMRES.
- Sample simulation redirected to McStas.
- The secondary beam traced by both McStas and SIMRES.

Simultaneous diffraction and SANS measurement

- Screenshot of the SANS pattern shown in the SIMRES
- SANS sample simulated by McStas.

BEER, alternating frame mode

- Time structure and spectrum of the primary beam simulated
- Used as MCPL input to the subsequent McStas simulation of the sample and secondary beamline.

Simultaneous diffraction and SANS measurement

Diffractogram and SANS pattern produced simultaneously by McStas. Primary beam simulated by SIMRES.

Scattering event lists

Conclusions

Benefits

- ✓ Higher simulation speed by more than an order of magnitude,
- ✓ Wider library of components which can be used to configure the instrument model,
- ✓ Combining components available only in SIMRES or McStas
- \checkmark No extra effort needed for code porting and maintenance.

Limitations

- ✓ Ray tracing algorithm of SIMRES does not permit to employ McStas sources
- Parallel computing: not available in SIMRES.
 No principal obstacle for McStas to employ paralel computing on its part of the ray-tracing job (?)

Thank you for your attention

SINE2020, ISTSI 2019, St. Petersburg, Russia, June 29th 2019